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We study spin dynamics and singlet-triplet decoherence due to the hyperfine interaction in a parabolic
double quantum dot, focusing on the effect of nuclear-spin polarization on the time evolution of the singlet
probability. The probabilities for the singlet state exhibit damped oscillations, which do not change consider-
ably when the nuclear-spin polarization is small. We derive expressions for the mean and variance of the
saturation value of the singlet probability in cases where the hyperfine field has a nonzero mean. We demon-
strate that the polarization could be deduced from experiments by measuring both the mean and variance of the
asymptotic singlet probability.
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I. INTRODUCTION

In a quantum-mechanical system, the interaction with the
environment causes decoherence. In order to develop quan-
tum devices, the problems related to decoherence must be
solved in some way. A setup of electrons confined in quan-
tum dots1 has emerged during recent years as one of the most
interesting alternatives for quantum computing
architecture.2–5 In low temperatures, the most significant de-
coherence source is the hyperfine interaction of the electrons
with the surrounding nuclear spins.6–9 There are several
methods to suppress the decoherence induced by the hyper-
fine field. The narrowing of the hyperfine field distribution is
one method.10 This is realized, e.g., by gate-controlled Rabi
oscillations11 or by optical preparation of nuclear spins.12

The polarization of the nuclear spins could also diminish the
decoherence rate,2 but nearly 100% polarization is
required,10 which is presently not feasible. However, the de-
coherence time may be substantially increased by a nuclear-
spin pumping cycle, which suppresses the hyperfine field
fluctuation by a factor of 70.13,14 Thus it is very important to
know the effect of the shape of the hyperfine field distribu-
tion on the decoherence of the spin system.

In the following, we analyze the singlet-triplet decoher-
ence in a double quantum dot. This phenomenon has recently
been measured by Laird et al.15 They controlled the system
parameters by varying the gate voltage over the system,
which affected the exchange energy. The singlet probability
was observed to saturate to a value which depends only on
the ratio of the hyperfine field strength and the exchange
energy. This is in accordance with the model developed by
Coish and Loss,16 where they describe the system using a
2�2 Hamiltonian matrix. We evaluate numerically the sin-
glet probability as a function of time, concentrating on the
changes the nuclear-spin polarization has on the dynamics.
In addition, we derive expressions for the asymptotic singlet
probability and its variance in a situation where the average
of the hyperfine field differs from zero.

II. SPIN DYNAMICS

A. Model

We investigate a system of two electrons confined in a
double quantum dot. The hyperfine interaction between elec-

trons and nuclei is approximated through a random mean
hyperfine field h. The Hamiltonian of the system reads16

H = �z�S1
z + S2

z� + h1 · S1 + h2 · S2 − J� 1
4 − S1 · S2� , �1�

where S1,2 are the spin operators of the electrons, h1,2 are the
hyperfine fields the electrons interact with, �z is the Zeeman
energy, and J is the exchange energy. We write the Hamil-
tonian in a more compact form

H = �zS
z + h · S + �h · �S +

J

2
S · S − J , �2�

where h=h1+h2, S=S1+S2, �h=h1−h2, and �S=S1−S2. If
the external magnetic field is large compared to the hyperfine
field, the coupling of the triplet states having Sz= �1 with
the states having Sz=0 is weak due to the Zeeman splitting.
This is the case in recent experiments of spin dynamics in
two-electron double quantum dots,9,15 as our numerical
simulations using realistic parameters from these experi-
ments show that the two triplet states with Sz= �1 remain
unoccupied.17 The relative error of the singlet probability
caused by the exclusion of the states with Sz= �1 is under
0.001. Hence, we may restrict our analysis to the dynamics
of the singlet state �S� and triplet state �T0�. The reduced
Hamiltonian �details of the calculation are given in Ref. 16�
is now

H =
J

2
S · S + �hz�Sz, �3�

which in matrix form reads

H = � 0 �hz

�hz J
� . �4�

The exact time dependence of the wave function can be
calculated from the relation ��t�=exp�−iHt /����0�. We de-
note ��t�= ���t���t��T and use the initial condition ��0�
= �10�T. We obtain the coefficient ��t� from the relation,
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��t� = ��0�TA�exp�i	1t� 0

0 exp�i	2t�
�A−1��0� , �5�

where 	1,2= 1
2 �J��4��hz�2+J2� are the eigenvalues of H and

A is the orthonormal matrix composed of the eigenvectors of
H. The singlet probability, given by ���t��2, is now

PS�t� =
1

2
�1 +

J2

D2 + �1 −
J2

D2�cos�Dt�	 , �6�

where D=�4��hz�2+J2. For constant �hz, the singlet prob-
ability oscillates sinusoidally. In order to obtain the average
over the statistical ensemble of hyperfine spins, we assume
the coupling �hz to be normally distributed with mean h0 and
variance 
0

2. The ensemble average of the singlet probability
as a function of time over the hyperfine field is given by


PS�t�� =
1

�2�
0
�

−�

�

exp�−
��hz − h0�2

2
0
2 �PS�t�d��hz� .

This integral is not easy to calculate analytically, and we
resort to numerical evaluation of the integral. Next, we will
study the effect of the polarization h0 and variance 
0

2 on the
singlet probability 
PS�t��.

B. Spin oscillation

Figures 1�a�–1�c� represent the time-dependent singlet
probability 
PS�t�� for different asymptotic singlet probabili-
ties: �a� 
PS����=0.82, �b� 0.91, and �c� 0.95, corresponding
to measurements of singlet probabilities with exchange ener-
gies J=25, 42, and 60 neV shown in Fig. 4 of Ref. 15. We
denote that the ensemble averaging of the sinusoidal oscilla-
tion results to damping of the singlet oscillation.

The values of the mean h0 and standard deviation 
0 used
in each figure �shown in the Table I� all give the same
asymptotic singlet probability. We observe that the curves are
close to each other when the ratio of the mean and standard
deviation h0 /
02. For the curves with largest h0, the ratio
is over 2 and these curves have notably larger amplitude.
These results indicate that one may estimate the polarization
of the hyperfine field by using the amplitude of the singlet
probability measurements.

We estimated that the fluctuation of the measurements of
Ref. 15 corresponds to around 50 realizations.17 The increase

in the amplitude due to the polarization could be observed
only when it exceeds the variation in the amplitude caused
by the averaging over finite number of realizations. Hence,
only for h0 /
0�2 one might have such a large oscillations
that could be used for more precise determination of the
polarization. Reilly et al.14 were able to suppress the fluctua-
tions of the hyperfine field component parallel to the external
magnetic field in their experiment by a factor of 70. Also the
polarization increased slightly, so that the ratio h0 /
0 in-
creased by 2 orders of magnitude. This results in a very
slowly damping oscillation for the singlet probability near
PS=1. Using this suppression method, it would be possible
to measure the singlet oscillations more accurately using the
scheme of Laird et al.,15 as the period of the oscillations is
longer and fluctuations smaller, and analyze the polarization
of the hyperfine field.

C. Spin saturation

Although it is not trivial to represent the average of PS�t�
over the hyperfine field distribution in a simple analytic
form, the averaging is easy to calculate for the saturation
value of PS. We define the time average of the singlet prob-

ability P̄S= 1
T�0

TPS�t�dt. When the upper limit of the time av-
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FIG. 1. �Color online� Singlet probability 
PS� as a function of time in the cases �a� 
PS����=0.82, �b� 0.91, and �c� 0.95, correspond-
ingly. The values of the mean and standard deviation used in each curve are given in the Table I. The amplitude of the oscillation increases
with the polarization of the hyperfine field h0.

TABLE I. The values of the mean h0 and standard deviation 
0

and colors �gray scales� of the respective curves in Fig. 1.

PS h0 /J 
0 /J Color �gray scale�

0.820 0 0.526 Black

0.365 0.316 Blue �dark gray�
0.379 0.263 Red �middle gray�
0.384 0.158 Green �light gray�

0.910 0 0.277 Black

0.203 0.166 Blue �dark gray�
0.215 0.139 Red �middle gray�
0.229 0.083 Green �light gray�

0.950 0 0.183 Black

0.126 0.128 Blue �dark gray�
0.149 0.092 Red �middle gray�
0.161 0.055 Green �light gray�
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eraging T is large, the oscillatory term in the singlet prob-
ability given by Eq. �6� is small, as the oscillations decay
with increasing time. Then we obtain the saturation value
from the time-independent part of Eq. �6�,

P̄S =
1

2
�1 +

J2

D2� . �7�

Next, we calculate the asymptotic singlet probability 
P̄S�,
which is an average of the saturation value P̄S over the hy-
perfine field realizations,


P̄S� =
1

2�2�
0
�

−�

�

exp�−
��hz − h0�2

2
0
2 �P̄S, �8�

which leads to the formula for the mean of the asymptotic
singlet probability,


P̄S� =
1

2
+��

2

J

4
0
exp� J2 − 4h0

2

8
0
2 �

� Re�exp� iJh0

2
0
2 �erfc� J + 2ih0

2�2
0
�	 . �9�

This result is in agreement with the expression derived by
Klauser et al.,11 when the Rabi oscillations of the exchange
energy vanish. In the case h0=0, we have


P̄S� =
1

2
+��

2

J

4
0
exp� J2

8
0
2�erfc� J

2�2
0
� . �10�

When the standard deviation 
0 approaches zero, the nor-
mal distribution in the integrand of Eq. �8� may be approxi-
mated by a delta function. Then the average is obtained from
the Eq. �7� by substitution �hz=h0 and we have


P̄S� =
1

21 +
1

4�h0

J
�2

+ 1� . �11�

The exchange energy J gives the relevant energy scale of the
system. Thus, it is natural to measure h0 and 
0 in units of J.

In Fig. 2, the asymptotic triplet probability 
P̄T�=1-
P̄S�
as a function of the mean of the hyperfine field is shown for
several values of the standard deviation of the hyperfine
field. For small standard deviation, the distribution of �hz is
concentrated around the mean. When the mean is increased,
most of the hyperfine field values are positive and the deco-

herence is stronger. Hence, the asymptotic value 
P̄T� ap-
proaches 1

2 . For larger values of the hyperfine field standard
deviation, the hyperfine field has a large portion of negative
values even in the cases where the mean is far from zero.
Therefore, in the case


0

J =2.0 the asymptotic value does not
change considerably when the mean increases.

In Fig. 3, 
P̄T� is shown as a function of the standard
deviation for different values of the mean of the hyperfine

field. For zero standard deviation, 
P̄T� is given by Eq. �11�.
In the case of nonzero mean, the triplet probability has a
finite value at 
0=0. All values of the hyperfine field are then
positive. When the standard deviation is increased keeping

the mean constant, the hyperfine field starts to have more
values in the vicinity of zero, and as a result of this, deco-
herence is weaker and the triplet probability has a minimum.
For

h0

J �0.5, the minimum point is around 3
5h0
minh0.

For
h0

J �1, minimum is at 
min�h0. As the standard devia-
tion is still increased, hyperfine field has more values far
from zero. This strengthens the decoherence and the triplet
probability goes toward the limit 1

2 . If the fluctuations of the
hyperfine field are suppressed,14 the asymptotic value of the
triplet probability depends strongly on the polarization of the
hyperfine field. This would be one alternative for experimen-
tal polarization studies.

The variance of the asymptotic singlet probability


2�
P̄S�� may be easily calculated using similar method as

with the derivation of the formulas for 
P̄S�. Now we also

have to calculate the average of the square of the mean P̄S
2
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FIG. 2. �Color online� Asymptotic triplet probability 
P̄T� as a

function of the mean of the hyperfine field
h0

J for different values of
the standard deviation of the hyperfine field. From bottom to top at

h0=0:

0

J =0.1, 0.2, 0.5, 1.0, and 2.0.
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FIG. 3. �Color online� Asymptotic triplet probability 
P̄T� as a

function of the of the standard deviation of the hyperfine field

0

J for
different values of the mean of the hyperfine field. From bottom to

top:
h0

J =0, 0.3, 0.5, 1.0, 2.0, and 5.0.
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and use the relation 
2�
P̄S��= 
P̄S
2�− 
P̄S�2. The results of the

derivation are given in the Appendix.
In an experimental setup, the parameter that may easily be

adjusted is the exchange energy J. The hyperfine field distri-
bution is typically frozen on the relevant time scale here. It is
therefore interesting to depict the situation using the dimen-
sionless ratio r0=

h0/J

0/J =

h0


0
, which does not depend on J. The

asymptotic variance 
2�
P̄T�� as a function of the asymptotic

singlet probability 
P̄T� for different ratios r0 is drawn in Fig.
4. As the ratio r0 increases, the variance of the triplet prob-
ability decreases. For r0�4, the curves change only very
slightly with increasing r0. This data could be used to obtain
information on the shape of the hyperfine field distribution.
This is done by measuring the asymptotic triplet probability
and its variance. Thus, it is possible to find the curve which
intersects with the corresponding measurement point and de-
termine r0. However, the asymptotic variance does not vary

much with the ratio r0. Hence, it might be difficult to deter-
mine r0 experimentally because the accuracy of the
asymptotic variance measurement should be high.

III. SUMMARY

In summary, we have analyzed the singlet-triplet decoher-
ence in a double quantum dot using model based on a 2
�2 Hamiltonian matrix. We evaluated numerically the time
dependence of the singlet probability for several hyperfine
field distributions. We observed that a small nonzero mean
on the hyperfine field does not have a considerable effect on
the singlet oscillations. We calculated exact formulas for the
asymptotic singlet probability and its variance for the case of
Gaussian hyperfine field distribution. The asymptotic triplet
probability was shown to have a minimum when variance is
close to the mean. We also demonstrated the possibility to
measure the ratio of the mean and standard deviation of the
hyperfine field by measuring the asymptotic mean and vari-
ance of the singlet probability.
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APPENDIX: VARIANCE OF THE ASYMPTOTIC SINGLET
PROBABILITY

For the time average of the squared singlet probability

P̄S
2= 1

T�0
TPS�t�2dt, we have

P̄S
2 =

1

8
�3 + 2

J2

D2 + 3
J4

D4� .

From this, one can calculate the ensemble average 
P̄S
2�, and

using this, we obtain the variance of the asymptotic singlet

probability 
2�
P̄S��= 
P̄S
2�− 
P̄S�2,


2�
P̄S�� =
1

64
�8 + 3

J2


0
2 − �2�exp� J2 − 4h0

2

8
0
2 �� J


0
Re�exp� iJh0

2
0
2 �erfc� J + 2ih0

2�2
0
�	 + �2�

J2


0
2exp� J2 − 4h0

2

8
0
2 �

��Re�exp� iJh0

2
0
2 �erfc� J + 2ih0

2�2
0
�	�2

+
3J3

4
0
3Re�exp� iJh0

2
0
2 ��2i

h0

J
+ 1�erfc� J + 2ih0

2�2
0
�	�� .

When the mean is zero, this formula simplifies to the expression,


2�
P̄S�� =
1

64�8 − �2�� 3J3

4
0
3 +

J


0
�exp� J2

8
0
2�erfc� J

2�2
0
� +

J2


0
2�3 − 2� exp� J2

4
0
2�erfc2� J

2�2
0
�	� .

In the case 
0=0, we obtain the following formula:


2�
P̄S�� =
1

81 −
2

4�h0

J
�2

+ 1

+
1

�4�h0

J
�2

+ 1	2� .
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FIG. 4. �Color online� Asymptotic variance of the triplet prob-

ability 
2�
P̄T�� as a function of the asymptotic triplet probability


P̄T� for different values of ratio of the mean and variance of the

hyperfine field. From top to bottom:
h0


0
=0, 1.0, 2.0, 3.0, and 4.0.

J. SÄRKKÄ AND A. HARJU PHYSICAL REVIEW B 79, 085313 �2009�

085313-4



1 D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 �1998�.
2 G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59,

2070 �1999�.
3 J. M. Taylor, H.-A. Engel, W. Dür, A. Yacoby, C. M. Marcus, P.

Zoller, and M. D. Lukin, Nat. Phys. 1, 177 �2005�.
4 R. Hanson and G. Burkard, Phys. Rev. Lett. 98, 050502 �2007�.
5 R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L.

M. K. Vandersypen, Rev. Mod. Phys. 79, 1217 �2007�.
6 A. V. Khaetskii, D. Loss, and L. Glazman, Phys. Rev. Lett. 88,

186802 �2002�.
7 I. A. Merkulov, A. L. Efros, and M. Rosen, Phys. Rev. B 65,

205309 �2002�.
8 F. H. L. Koppens, J. A. Folk, J. M. Elzerman, R. Hanson, L. H.

Willems van Beveren, I. T. Vink, H. P. Tranitz, W. Wegscheider,
L. P. Kouwenhoven, and L. M. K. Vandersypen, Science 309,
1346 �2005�.

9 J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby,

M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard,
Science 309, 2180 �2005�.

10 W. A. Coish and D. Loss, Phys. Rev. B 70, 195340 �2004�.
11 D. Klauser, W. A. Coish, and D. Loss, Phys. Rev. B 73, 205302

�2006�.
12 D. Stepanenko, G. Burkard, G. Giedke, and A. Imamoglu, Phys.

Rev. Lett. 96, 136401 �2006�.
13 J. R. Petta, J. M. Taylor, A. C. Johnson, A. Yacoby, M. D. Lukin,

C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev.
Lett. 100, 067601 �2008�.

14 D. J. Reilly, J. M. Taylor, J. R. Petta, C. M. Marcus, M. P.
Hanson, and A. C. Gossard, Science 321, 817 �2008�.

15 E. A. Laird, J. R. Petta, A. C. Johnson, C. M. Marcus, A. Ya-
coby, M. P. Hanson, and A. C. Gossard, Phys. Rev. Lett. 97,
056801 �2006�.

16 W. A. Coish and D. Loss, Phys. Rev. B 72, 125337 �2005�.
17 J. Särkkä and A. Harju, Phys. Rev. B 77, 245315 �2008�.

EFFECT OF NUCLEAR POLARIZATION ON SPIN… PHYSICAL REVIEW B 79, 085313 �2009�

085313-5


